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ABSTRACT

Along with the development of hyphenated chromatography
techniques, such as high performance liquid chromatography
(HPLC) with diode array detection (DAD), three-dimensional
data matrix for each sample can be easily obtained.  In this paper,
a comparative study of three methods using this type of data is
presented.  The capabilities of inverse calibration through ordinary
least squares (OLS), partial least squares (PLS), and an artificial
neural network (ANN) model, have been investigated for the
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simultaneous multicomponent analysis of synthetic mixtures of
iprodione, procymidone, chlorothalonil, folpet, and triazophos
when highly overlapping analytical signals are present.  

Also, the methods have been satisfactorily applied to the deter-
mination of the pesticides in groundwater and soil samples,
although the ANN gave the best results. 

INTRODUCTION

The rapid development of multivariate data analysis techniques is. nowadays,
a paramount aspect in analytical chemistry.  Within these techniques, the use of
multivariate calibration methods has been growing in a significant way and numer-
ous applications are appearing in different instrumental methods of analysis. 

Although most of them utilize data from one-order instruments, i.e., the
variables are characterized by a vector of spectral measurements for each sample,
with the great development of analytical instrumentation, second order data can
be easily generated in analytical laboratories.  Examples could be the output from
a high performance liquid chromatography (HPLC) with multiwavelength detec-
tor, the output from a gas chromatography (GC) with mass spectroscopic detec-
tion, or an excitation emission fluorescence matrix.  In this way, the development
of methods that can be applied to this type of data has become mandatory.

Several advancements in higher order calibrations, especially those using
second order data, have been cited in reviews.1-4 Different algorithms1-10 have
been already proposed to estimate the concentration and spectral profile of each
component and some analytical applications have begun to appear.9, 11-15

Recently, we have developed a new methodological approach16-20 in order to
extract greater analytical information from a complex three dimensional matrix,
such as that generated by HPLC with diode array detector (DAD), obtaining new
bidimensional signals, different from conventional spectra or chromatograms,
with a lower degree of overlapping.  The method allows the combination of chro-
matographic and spectral information, avoiding the use of a three-dimensional
matrix to solve the problem. 

In this paper, we present a comparative study of the capabilities of three
methods that use all the information coming from a HPLC-DAD, when the ana-
lytical signals show a high degree of overlapping to develop reliable calibration
models and, subsequently, to obtain accurate quantitative information.  The meth-
ods under investigation are inverse linear regression based on the ordinary least
squares with QR-Householder transformation (OLS-QRHT) and on the partial
least squares with the general “nipals” algorithm (GPLS), as well as an artificial
neural network (ANN) model, the Generalized Regression Neural Network
(GRNN).
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All three methods are applied for simultaneous multicomponent analysis
with two-variable function data A(λ, t) generated by HPLC-DAD.  A reduction of
the λ-t region, aimed to eliminate irrelevant A function data was made by adding up
the chromatograms of the calibration set samples and visualizing it using the
graphic facilities of the MATLAB system.21 The reduced data matrix was then vec-
torized, collecting in one single row all the valuable information for each sample.

In the inverse statistical linear calibration with OLS, an orthogonal
Householder transformation22 is used for factorization of matrix X in the under
determined linear system Xβ=Y obtained, where X represents the matrix of
absorbances vectorized, and Y, the concentration matrix.

In the inverse calibration with the GPLS,23,24 an incomplete singular value
decomposition is obtained through the “nipals” algorithm, which gives an
approximate factorization of X for solving Xβ=Y.

A series of publications have summarized main applications of ANNs in
Chemistry and, particularly, in Analytical Chemistry.25-28 They have been applied
to solve a wide array of problems including modeling non-linear calibration
curves29 and data reduction or mapping.30 In addition, ANNs have been fre-
quently used to tackle the problem of simultaneous identification and/or determi-
nation of chemical species when they present overlapped analytical signals.31-34

All the last cited papers employ the Multilayer Feed Forward Neural Networks
(MLFNN) with the back-propagation learning rule (BPLR)25,35 as training algo-
rithm.  

In this ANN model, various parameters have to be optimized for reaching
good results.  The number of hidden layers (the most common architecture is one
hidden layer), number of neurons in the hidden layers, transfer functions in the
hidden and output units, learning rate and momentum term of the training proce-
dure, are some of the parameters that have to be determined.  Likewise, the BPLR
is essentially a gradient based optimization method that takes place along an iter-
ation process.  

As a consequence of these facts, the price that should be paid in terms of
time of searching of the adequate model is an important drawback of the
MLFNN. 

The GRNN was first published by Specht in 1991.36 Based on probability
density functions, the GRNN performed a regression that estimates the most
probable curve of the observed data without assuming any particular form of the
function.  Its advantages have been summarized by Caudill.37 In this sense, three
main aspects should be mentioned: a) the architecture of the network is deter-
mined by the amount of the elements in the training set; b) only one parameter is
necessary to determine, the “smoothing constant”, σ, and, once it is selected, c)
the training process is a single pass of the training set.  In spite of its possibilities,
after the publication of the original paper, only one application has been reported
in the field of analytical chemistry.38 Considering the features that exhibit the
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GRNN, it was decided to study how it behaves as a calibration tool for quantita-
tive estimation of analyte concentrations under the aforementioned conditions. 

In this paper the three methods have been evaluated with a synthetic
HPLC-DAD data set, corresponding to a complex mixture of five components
with a high degree of overlapping.  Finally, the methods have been applied to the
simultaneous determination of five pesticides, in environmental groundwater and
soil samples at µg l-1 levels, after an extraction with methylene chloride and ace-
tone, respectively.39

THEORY

Ordinary Least Squares Method

To solve the linear system Xβ = Y, Xn�m and Yn�p, using the least squares
method, an estimated matrix β̂m�p of parameters must be found such that the j-th
column β̂( j) of β̂ minimizes the sum of squares of the j-th residuals (1�j�p):

If a QR-type factorization of X is obtained through a Householder transfor-
mation,22 X = QR, then 

and these factors are used to find the j-th minimum-length least squares solution
β̂( j), solving

Rβ̂( j) = Q'Y( j), 1�j�p,

with Rnxm upper triangular and Q' = Qnxn.  The prediction of concentration Ȳ, for
unknown samples will then be carried on using the product Xunkβ̂.

The ordinary least squares method is the best one when matrix X has full
column rank (i.e., linearly independent columns), but the presence of collinearity
is not so good because the variance of parameters β̂( j) can be large.  For this rea-
son, other methods are preferred as, for example, the GPLS, which follows.
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The General Partial Least Squares Method

If an incomplete singular value decomposition of X is obtained through the
“nipals” algorithm23,24

X = USV' � s1u1v'1 + s2u2v'2 + ... + srurv'r ,

where ui, vi: singular vectors of matrix X, si: dominant singular values of X
and r: numerical or effective rank of X.  This approximate factorization is used to
find β̂, and knowing β̂, concentrations of unknown samples can be predicted in a
similar way as before.

The Generalized Regression Neural Network

The GRNN is a neural network model formed by four neuron layers. The
first one, the input layer, has as many neurons as the amount of elements in the
input vector and it distributes the input vector to each of the neurons of the sec-
ond one, the pattern layer.  The input layer is fully connected to the pattern layer.
The number of neurons of the pattern layer is given by the amount of samples in
the training set.  Each pattern layer unit will subtract the input of each training
element from the corresponding weight.  After this operation, it can be taken as
either the square of these differences or the absolute values of the differences
across all the weights.

The input function of the jth unit of the pattern layer will be

Ij = Σ  wij - xij or  Ij = Σ (wij - xij)
2

where xi are the input signals and wij are the connection weights between
the ith input layer neuron and jth pattern layer neuron.

This net input is then passed through a nonlinear activation function, usu-
ally an exponential function of the form:

Here σ is the smoothing constant.  This parameter plays an important role
for an accurate fit of the modeling function.  The output of the pattern layer is
transmitted to the summation layer.  There are two kinds of summation neurons,
A and B, that take different values depending on the particular application.  The
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pattern layer and the summation layer are also fully connected. When each neu-
ron of the pattern layer corresponds to one sample in the training set the B
weights are all set to one.  The A weights are the expected outputs for each sam-
ple of the training set.  The summation neurons, A and B, perform a dot product
between the weight vector and the output signals from the pattern layer neurons.
These products go to the neurons of the output layer where the A summation’s
neuron outputs are divided by the B summation’s neuron outputs to give the net-
work’s output.

For the estimation of the optimum σ value, we searched the minimum error
of the predictions using all but one sample of the training set to train the network
with a given σ value and then we compared the output with the expected concen-
trations of the sample not included in the training set.  This process is repeated for
all the samples of the training set, which allow calculating an average prediction
error for the given σ value.  In this way, the optimization of the smoothing con-
stant is carried out using the Fletcher-Reeves method.40

To asses the ability of a calibration model to predict concentrations in
future samples, we commonly use the root mean squared prediction error,
RMSEP, expressed as:

where n is the total number of calibration samples; yij is the reference con-
centration of the jth component in the sample i, and yij represents the estimated
concentration.

This error estimator is used to evaluate the fitness of the calibration methods.

EXPERIMENTAL

Chemicals and Solvents

Pesticide standards (Pestanal quality) of iprodione, procymidone,
chlorothalonil, folpet, and triazophos, were obtained from Riedel-de Haën
(Seelze, Germany).  Solid standards were dissolved in acetonitrile (AcN) and
diluted in this solvent, where they were stable for several months.  Analytical-
reagent grade solvents, AcN and methylene chloride, obtained from Merck
(Darmstadt, Germany) were also used.  HPLC-grade water provided by a Milli-Q
water filtration/purification system from Millipore (Bedford, MA, US) was used.
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Instrumentation and Software

A Waters (Milford, MA, US) model 990 liquid chromatographic system,
equipped with a Model 600 E constant-flow pump, a Rheodyne six-port injection
valve with a 20 µL sample loop, a Model 990 UV-visible photodiode-array detec-
tor, a printer/plotter, and a microcomputer using 991 software were used.

The programs used for data processing were developed by the authors,
implemented in Matlab 5.2, and run on a Pentium II with 64 MB RAM.

HPLC Procedure

HPLC separations were carried out using a RP-C18 150 x 4 mm (5 µm par-
ticle size) column from E. Merck (Darmstadt, Germany).  The mobile phase,
under isocratic conditions, was AcN:water (70:30) v/v.  This composition of the
mobile phase was used to reduce the time of analysis and avoid the dispersion of
peaks. 

The solvents were filtered daily through a 0.45 µm cellulose membrane fil-
ter before use and degassed with helium before and during use.  Samples of 20
µL were injected with the solvent flow-rate maintained at 1 mL.min-1. 

Photometric detection was performed in the range 200 - 250 nm, with a
spectral resolution of 1.4 nm.  Data were obtained over an integration period of
1.4 seconds per spectrum.

Procedure for Analysis of the Pesticide Mixtures

A calibration matrix with mixtures of the five pesticides was prepared,
using a twenty four-sample set, in the range 0-8 µg.mL-1.  Volumes of 20 µL were
injected into the HPLC system and the spectrochromatographic data were col-
lected.  The proposed methods were applied to analyze synthetic mixtures and to
determine the concentrations of the pesticides. 

Procedure for Determining Pesticides in Groundwater

Three extractions with methylene chloride were carried out.  Water samples
(500 mL) were shaken with 50 mL of methylene chloride for 2 min each.  The
combined organic phases were dried by passing them through anhydrous Na2SO4

and evaporated using a rotary vacuum evaporator.  The samples thus concentrated
were diluted with 1 mL of AcN and the pesticides were determined as described
above. 
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Procedure for Determining Pesticides in Soil

A 25-g amount of ground soil was weighed, spiked with the pesticides, and
passed through a 55-mesh sieve.  The soil sample was stirred for 4 h with 50 mL
of acetone, filtered through a Büchner funnel and washed thoroughly with two
25-mL portions of acetone.  The resulting extract was evaporated to dryness
using a rotary vacuum evaporator.  The residue was dissolved in 5 mL of AcN
and the pesticides were determined as described above.

RESULTS AND DISCUSSION

Figure 1 shows a spectrochromatogram corresponding to a mixture of ipro-
dione, procymidone, chlorothalonil, folpet, and triazophos, using AcN:H2O
(70:30) v/v as the mobile phase.  Great overlapping of the peaks under isocratic
conditions can be observed.  The analytical conditions were not changed in order
to reduce the analysis time, to avoid the dispersion of signals, and to eliminate the
time needed for regeneration of the column between analysis, if gradient condi-
tions are used.  This simultaneous elution of the pesticides does not permit the
resolution of the mixtures by conventional chromatography.

On the other hand, it can also be noticed from Figure 1, that the pesticides
are highly absorbing substances in the UV region of the spectrum with maxima
absorption at close wavelengths, 200 and 245, 206, 207, 225, and 233 nm for tri-
azophos, procymidone, iprodione, folpet, and chlorothalonil, respectively.
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Figure 1. Isometric (A, λ, t) representation of the spectrochromatogram of a mixture of:
(1) iprodione (4 µg mL-1), (2) folpet (3 µg mL-1), (3) chlorothalonil (2 µg mL-1), (4) tria-
zophos (6 µg mL-1), and (5) procymidone (5 µg mL-1).
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Clearly, the common spectral features prevent discrimination by the traditional
techniques of obtaining chromatograms at several wavelengths or absorption
spectra at different retention times, to resolve this particular data set.

In consequence, one possible way of tackling the analysis of these pesti-
cides, involves the selection of a single wavelength detector compromise, obtain-
ing overlapped chromatograms, and then applying calibration methods, as PLS1.
In a previous paper, two different wavelengths (200 and 220 nm) were selected to
evaluate the PLS1 method,39 but this implies that part of the information from
HPLC-DAD is not used for the analysis.  To take advantage of the best informa-
tion, it would be necessary to build a calibration model at the wavelength of max-
imal absorbance for each analyte, i.e., more than one calibration model.

For solving the analytical problem using all the information enclosed in the
collected A(λ,t) data matrix and with a single regression method, a transforma-
tion of the data was carried out.  This consisted of converting the three-dimen-
sional matrix into bi-dimensional, placing the chromatograms obtained at the dif-
ferent wavelengths in a single row for each sample. 

In order to keep only the regions with the maximum information for the
analysis, the chromatographic region between 315 and 360 s (which implies
working with 46 variables) was selected for the analysis on the time domain, and
between 200 and 274.4 nm (which implies to work with 53 variables) on the
wavelength domain (Figure 2).  So that, the X independent variable matrix had
dimensions of 24 x 2438, i.e., 46 x 53 = 2438 columns by 24 rows (number of
calibration samples).  This matrix was used to apply the OLS-QRHT and GPLS
methods.

In the case of the GRNN for building up the calibration model, the input
information is composed of the chromatograms contained in the A(λ,t) matrix
belonging to each sample ordered as a vector.  The vector was formed using the
same time and wavelength domain that was selected for the method explained
before.  To simplify the network and the data processing time, in the input vectors
we only included half of the total amount of absorbance values by the elimination
of alternate points.  As a result of this process, the input vectors had 1218 ele-
ments each.  No experiments were performed to evaluate the dependence of the
RMSEP with the amount of the input information.  The smoothing parameter was
determined using the method previously described with the samples of the train-
ing set. 

The training set is given in Table 1.  A total of 24 samples were taken in the
concentration range of 0.5-8 µg mL-1, which is the linear response range for all
the analytes.

The internal validation results obtained by the OLS-QRHT and GPLS
methods are summarized in Table 2.  The best prediction errors were obtained
with the OLS-QRHT method, while the GRNN shows slightly better RMSEP val-
ues than the GPLS model.  The RMSEP values for the GRNN illustrate the effec-

PESTICIDE IN GROUNDWATER AND SOIL 659

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
3
3
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



tiveness of the artificial neural network for modeling the system.  In a relatively
easy and simple way, it was possible to obtain an optimal generalized regression
surface. 

On the other hand, the prediction error associated to each component will
reflect how the given calibration method is capable of identifying and quantifying
the particular chemical specie.  In our conditions, as can be regarded in Table 2,
no significant differences were observed among the errors associated with each
component in each method.  In addition, similar results were obtained applying
the methods to the data obtained placing the spectra registered at the work time
range in a single row for each sample, i.e., working at the wavelength domain.

According to the results, it should be pointed out that the three methods
were effective for solving systems with high degree of overlapping analytical sig-
nals from three-dimensional data. 
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Figure 2. Contour plot representation of the above spectrochromatogram in which the
region used in the analysis is marked.
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Table 1. Concentration Data of the Training Set for the Five Component System 
(µg mL�1)

Sample Iprodione Procymidone Chlorothalonil Folpet Triazophos

T1 0.0 3.0 4.0 4.0 6.0
T2 3.0 0.0 4.0 4.0 6.0
T3 4.0 6.0 0.0 3.0 3.0
T4 4.0 2.0 2.0 0.0 4.0
T5 5.0 4.0 6.0 6.0 0.0
T6 2.0 5.0 2.0 2.0. 5.0
T7 2.0 2.0 5.0 5.0 3.0
T8 6.0 3.0 2.0 3.0 3.0
T9 2.0 2.0 4.0 4.0 7.0
T10 3.0 5.0 3.0 2.0 5.0
T11 5.0 4.0 5.0 4.0 2.2
T12 2.0 6.0 6.0 2.2 6.0
T13 4.0 2.0 4.0 2.2 2.4
T14 2.0 2.0 2.0 4.0 4.0
T15 3.0 5.0 3.0 2.0 6.0
T16 5.0 6.0 4.0 2.0 3.0
T17 3.0 2.0 4.0 6.0 5.0
T18 4.0 5.0 2.0 3.0 6.0
T19 7.0 2.0 5.0 3.0 5.0
T20 3.0 7.0 5.0 4.0 8.0
T21 5.0 5.0 3.0 7.0 2.2
T22 1.0 4.0 1.0 5.0 5.0
T23 2.0 1.0 2.0 2.0 4.0
T24 6.0 3.0 6.0 1.0 2.2

Table 2. Prediction Error of Internal Validation Using OLS-QRHT (*), GPLS (**) and
GRNN (***) Methods

RMSEP

Component * ** ***

Iprodione 0.61 10�11 1.2.10�1 8.64 10�3

Procimidone 0.12 10�10 1.4.10�1 8.81 10�3

Chlorothalonil 0.89 10�11 1.2.10�1 9.85 10�3

Folpet 0.55 10�11 1.1.10�1 6.49 10�3

Triazophos 0.43 10�11 5.8.10�1 8.90 10�3
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Predictions in Synthetic Mixtures

To check the validity of the proposed models, a set of synthetic mixtures of
the five pesticides was prepared.  In Table 3, the composition of the mixtures
studied is shown.  The predictions (expressed as percentage of the expected con-
centrations) and the precision of the measurements (expressed as relative stan-
dard deviation, RSD) obtained by the methods under study are given in Table 4.
It can be seen, that the GRNN is better than the other three methods. It can be
observed, that the worst predictions with the OLS-QRHT and the GPLS methods,
were obtained in samples with the lower analyte concentrations, i.e., V5 for ipro-
dione or V1 for procymidone, while GRNN performed adequately in all cases
including these more problematical samples.
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Table 3. Concentration Data of the Validation, Groundwater, and Soil Sample Sets for
the Five Pesticide System

Sample Iprodione Procymidone Chorothalonil Folpet Triazophos

Validation Set (mg mL-1)
V1 3.5 1.5 4 3.5 6
V2 6 5.5 4.3 2.2 4.2
V3 2 2.5 1.5 6 3
V4 4.4 6 3 6 5.5
V5 1.5 2.5 1.5 4 2
V6 2.4 4.5 2 2 5
V7 3 5 4.4 4.5 4.5
Groundwater Set (mg l-1)
G1 6 6 12 8 10
G2 8 10 8 10 8
G3 4 4 6 6 10
G4 10 8 8 8 2
G5 6 6 4 10 10
Soil Set (mg l-1)
S1 4 3 5 2 5
S2 3 2 4 3 3
S3 6 4 3 4 4
S4 2 6 2 4 3
S5 5 3 6 5 3
S6 2 4 3 6 4
S7 3 2 5 5 3
S8 4 5 3 3 6
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Determination of the Pesticides in Groundwater

The proposed methods were also applied to the determination of the pesti-
cides in groundwater, as was described under Experimental.  In Tables 3 and 5,
the composition of the mixtures assayed and the recoveries, as well as RSD val-
ues obtained, are respectively shown.  In all instances, the best results were found
with the GRNN, as in the synthetic mixtures.  In general, the OLS-QRHT and the
GPLS methods did not obtain significant differences, although, for the procymi-
done component better recoveries were found with the last one.

Determination of the Pesticides in Soil

The methods were also applied to the determination of the pesticides in soil
samples, as was described under Experimental.  In Tables 3 and 6, the composi-
tion of the mixtures assayed and the recoveries (and RSD values) obtained are
shown respectively.  The best of all results, as in the previous application, were
obtained with the GRNN.  Now, there are more differences between the predic-
tions obtained with the GRNN with respect to the ones obtained by the OLS-
QRHT and GPLS methods.  These methods presented significant bad predictions
when the pesticides were present at low concentration samples.  So, the more pre-
dictive capacity of the GRNN over the other two methods in the analysis of com-
plex soil samples is evident.  

In short, despite the fact that the best internal validation errors were
obtained by the OLS-QRHT method in the analysis of both real and synthetic
samples, the best results were found with the GRNN.  Perhaps, this fact could be
explained considering the multicollinearity appearing in the vectorized
absorbance matrix, i.e., the variance of the β̂(j) parameters can be very large, and
this is not, therefore, advisable for good predictions. 

On the other hand, the RMSEP values of the internal validation showed that
the proposed methods offer smaller prediction errors than the PLS136 and, besides
this, they allow the simultaneous determination of the five pesticides with a sin-
gle calibration model, whereas this was not possible when the PLS1 method was
applied using a single wavelength signal.

CONCLUSIONS

In this paper, the OLS-QRHT and GPLS methods and the GRNN were
applied, prior to an adequate transformation of three-dimensional data, for the
simultaneous determination of five pesticides with overlapped chromatographic
and spectral signals.
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Although the OLS-QRHT method has the minimum RMSEP for the cali-
bration set when applications in synthetic mixtures, groundwater, and soil sam-
ples were carried out, the GRNN was the method with the best performance in
the particular conditions in which the experiments were done.  Differences are
particularly important in groundwater and soil samples due to the complexity of
the systems.  The GRNN method was demonstrated to be a flexible and powerful
model for handling strong overlapped data with advantages in comparison with
the other techniques.
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